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What is ECC?

Error Correction Coding (ECC) — technique that is used in telecommunication and computing
systems that allows to fix errors that appear in message while transferring through some noisy
channel. Different names for this research field and its subfields can be met in literature, i.e.
Forward Error Correction (FEC), Channel Coding, Erasure Coding (EC, actually sub-direction of
ECC), Error Controlling Codes etc. In these slides we will focus on block coding.
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s it useful?

ECC techniques are used in quite a lot of directions and applications:

ISpace and satellite communications;

IDigital mobile communications (4G, 5G);
JIHigh-speed computer memory (NAND Flash memory);
IFile transfer protocols (including TCP/IP stack);
JQuantum computing;

Jand much more...

For more examples you can refer to the article “Applications of Error-Control Coding” by Daniel J.
Costello et.al. (although it is rather old one)



What’s the intuition behind ECC?

Common block-ECC techniques work “against” compression, i.e. some amount of additional
information is added to the initial user data, which allows you to find and fix errors inside the
noisy message after transmission. In case of systematic code original data is unmodified, in not
systematic case data is also modified before transmitting (but can be recovered). Rate of the
code is the fraction of data symbols length to total block length after adding parity.

P parity In the end each K data symbols are matched
e K symbols of data-block 1 i

symbols to K+P data symbols, which means that there

S X is @ mapping between K-dimensional space

symbols | K'symbols of data-block 2 - Rate R = —— (in binary case — just vectors of {0,1} of

length K) and K+P dimensional space. Error

P pat;itly « K symbols of data-block 3 correction properties of the code are

SYmDols | achieved if the resulting blocks of length
General scheme for syst;r;ratic encoding — to each block K+P have some “space” between each other

of message symbols some amount of parity added before and can be distinguished after some noise is
transmitting in channel, to ensure reliability
added from channel.



What are rate limits?

The first and probably most well-known limit to the performance of ECC was proved by Claude Shannon in 1948 in his
noisy-channel coding theorem. This theorem in its first part states that not any rate is achievable in reliable data
transmission, given some specific channel with some level of noise that it adds to the transmitted message (X — channel
input, Y — channel output, pyx - marginal distribution of input). For finite-block regime Shannon bound is not tight, and

better estimation (2" order) bounds can be used (see Polyanskiy-Poor-Verdu bounds).
Theorem (Shannon, 1948):

1. For every discrete memoryless channel, the channel capacity, defined in terms of the mutual information I(X; Y) as

1
1
has the following property. For any e > 0 and R < C, for large enough N, there exists a code of length IV and rate > R and a decoding algorithm, |

such that the maximal probability of block erroris < e. . Y

2. If a probability of bit error p;, is acceptable, rates up to R(pb) are achievable, where

C
Rlp) = 1— Ha(py)

and H, (pb) is the binary entropy function

1 1
1 1
1 1
: utual information can be equivalently expressed as: :
VI Y) = H(X) - H(X | V) i
' =H(Y) - H(Y | X) :
' = H(X) + H(Y) — H(X,Y) !
' =H(X,Y)-H(X | Y)-H(Y | X) i
1 1
I where H(X) and H(Y') are the marginal entropies, H(X' | ¥') and H(Y" | X) are the conditional entropies, and H(X,, ¥) is the joint entropy of X and |
1 1
1 1

Hy(py) = = [pologa pp + (1 =) logy (1 —ps)]  Fmmmmmmmmmmmomomomomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooe

3. For any py, rates greater than R(p;) are not achievable.

(MacKay (2003), p. 162; cf Gallager (1968), ch.5; Cover and Thomas (1991), p. 198; Shannon (1948) thm. 11)



https://en.wikipedia.org/wiki/Noisy-channel_coding_theorem
https://people.lids.mit.edu/yp/homepage/data/finite_block.pdf

How the noise is measured?

Shannon theorem states that rate should be less than capacity for some reliable coding scheme
to exist, but capacity is calculated for specific channel with some level of noise. To express the
level of noise usually the specific metric Signal-to-Noise Ratio is used. Signal-to-noise ratio is
defined as the ratio of the power of a signal (meaningful input) to the power of background

. . : Psignai . . : :
noise (meaningless or unwanted input): SNR = —2"=; however, measuring this fraction “as-is”
noise

is not very convenient in applications, so usually SNR is expressed in decibels: SNR;;, =

10log,o(SNR). For some specific channel models (i.e. Additive White Gaussian Noise Channel)
SNR is a very convenient metric to express channel-capacity at once:

Example application |edi]

An application of the channel capacity concept to an additive white Gaussian noise (AWGN) channel with B Hz bandwidth and signal-to-noise ratio S/N is
the Shannon—Hartley theorem:

S
C = Blog, (1 + F)

C is measured in bits per second if the logarithm is taken in base 2, or nats per second if the natural logarithm is used, assuming B is in hertz; the signal
and noise powers S and N are expressed in a linear power unit (like watts or volts?). Since S/N figures are often cited in dB, a conversion may be needed.
For example, a signal-to-noise ratio of 30 dB corresponds to a linear power ratio of 10%0/10 — 10% = 1000.


https://en.wikipedia.org/wiki/Signal-to-noise_ratio
https://en.wikipedia.org/wiki/Additive_white_Gaussian_noise

How to make a code?

Suppose we identified the upper bound for a rate based on channel characteristics and we want to
construct some ECC scheme for reliable transmission (we have to take into consideration that
Shannon bound is very optimistic in finite block coding regime, though).

If we just select a random mapping fron){the K-dimensional space (where K is data size in block) to
K+P dimensional scheme, so that R = P < C, the code may appear good

(and most probably will in case of very long values K+P, that’s what Shannon’s proof is about),
but we will have to organize a good encoding and decoding algorithm for any input data stream.
We could go with the following algorithm(input data in vector space over some finite field):

For every vector in K-dimensional space store the corresponding vector of size K+P. After receiving
some message find the closest vector (i.e. closest by Hamming in finite fields) from the listed vectors in
K+P d/m%r);smna/ space, and say that this was an originally sent message (Maximum Likelihood
approach).

However, this is a terribly complex approach with extremely high computational and memory
requirements, even in case of moderate-length codes (i.e. K + P > 100).



What makes some code good?

Thus, ECC scheme is in general some mapping and algorithms for decoding and encoding.

A good ECC scheme is such a mapping, that:
Jhas reasonable computational complexity;
Jhas low memory requirements;

Jis able to decode enough amount of errors to achieve reliable transmission.

That is why usually code constructions under consideration have some good properties, and
scientists put a lot of work to construct codes from some big class of codes. One of the most
valuable classes of good codes (if not the most valuable) is the class of linear codes.



What are linear codes?

In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword.

A linear code of length n and dimension k is a linear subspace C with dimension k of the vector space FZ' where F g is the finite field
with g elements. Such a code is called a g-ary code. If g = 2 the code is described as a binary code. The vectors in C are called codewords.
The size of a code is the number of codewords and equals gk.

Since it is a linear subspace, it is possible to generate a basis for this subspace, and thus make a matrix which will generate any possible
element of the linear code using right-multiplication. Such a matrix is called a generator matrix for the linear code. If we consider an
orthogonal subspace for C and construct a generator matrix for it, we will receive a so-called parity-check matrix for the linear code. It is
obvious that left-multiplication of parity check matrix on any codeword from C results in zero (so kernel of parity check matrix is code C).

Example: Hamming codes |edit]

Main article: Hamming code

As the first class of linear codes developed for error correction purpose, Hamming codes have been widely used in digital communication systems. For any

Slocont 1011100\ Yo 1

G = , H = 1110010 : The weight of a codeword is the number of its elements that are nonzero and the distance between two codewords is the Hamming distance between |
0010111 0111001 : them, that is, the number of elements in which they differ. The distance d of the linear code is the minimum weight of its nonzero codewords, or :
0001101 | equivalently, the minimum distance between distinct codewords. A linear code of length n, dimension k, and distance d is called an [n,k,d] code (or, more :
predisely, [, kydlgcode). !



https://en.wikipedia.org/wiki/Linear_code

How does codec work?

Using a generator matrix G for each input data block of size k in finite field we create a message using multiplication by G:

message = input_data * G

After data transfer through some noisy channel, part of the message may become corrupted. First check that is made is multiplication by
parity-check matrix H to see, if the received message a codeword from our code:

H * message ==

If this equality is not holding, we can state that error was detected. If it is holding, it is either the correct message or the undetected
error. In case If we can resend data when we detect some errors this would be it, and we would just ask for new message from the sender.
However, usually we expect to be able to fix some amount of errors, and that is when the hard part starts:

We have to design such an algorithm for a given code (mapping) that would allow us to:
1) Detect the positions of the errors in the incoming message (this is where all heavy math usually appears)
2) Fix errors on these positions

If we somehow know the positions of errors (and we can treat them like erasures) we have half of the work done, and this is the easy
case.

Here the concept of code distanceJ)Iays the crucial part. If the code distance is d, and we have t errors and e erasures in the incoming
message, the following should hold to guarantee the error-correction capability:

2xet+t<d



How else codes can be represented?

In coding theory, a Tanner graph, named after Michael / Example: Tanner Gmph' \

Tanner, is a bipartite graph used to state constraints or

equations which specify error correcting codes. Do e ]

For linear codes Tanner graph would be just a very neat H = :} [1} g i ; (1} |-
representation of a parity-check matrix. As we already 00101 1J

know, parity check matrix H is just a special matrix that Variable nodes

allows us to check if the incoming message a codeword

or not. In case is it is not a codeword — we are sure W

some errors happened during transmission, if not — we

cannot be 100% sure that it is a correct message, but ~ \_ Checknodes /
with some probability. Example of a Tanner graph from these slides

In case of binary codes edges in tanner graph need to
additional weights, and using Tanner graph only one
can reconstruct the linear code.


http://www.comlab.hut.fi/studies/3410/slides_08_12_4.pdf

What’s LDPC?

In information theory, a low-density parity-check (LDPC) 11110000000 07
code is a linear error correcting code, a method of 000011110000
transmitting a message over a noisy transmission channel. 00000O0OO0OO0OT1T1T11
An LDPC code is constructed using a sparse Tanner graph. 101001000100
LDPC codes are capacity-approaching codes, which means H=]1010000110001
that practical constructions exist that allow the noise 00011000101¢0
threshold to be set very close to the theoretical maximum 100100100100
(the Shannon limit) for a symmetric memoryless channel. 010001010010

001010001001,
LDPC codes are also known as Gallager codes, in honor of "1 0000101010 07
Robert G. Gallager, who developed the LDPC concept in 100110000010
his doctoral dissertation at the Massachusetts Institute of 010010101000
Technology in 1960.LDPC codes have also been shown to 001001000011
have ideal combinatorial properties. In his dissertation, H=f0og10002110400]1
Gallager showed that LDPC codes achieve the Gilbert— Bl G0 L 800 LE LY
Varshamov bound for linear codes over binary fields with (1) (1) g (1) 8 (1) (1) (1) 8 1 g 8
high probability. 001100001001,

Gallager (upper) and MacKay (lower) examples of LDPC constructions.
See this article in Russian for more gentle introduction to LDPC.



https://habr.com/ru/articles/453086/

How LDPC is constructed?

LDPC codes can be regular or irregular. Regular
codes have the good property that in each row

in parity-check matrix has exactly d. non-zero 2
elements, and each column has exactly d,, “f B B
non-zero elements. In that case, matrix can be v4 1119891 19 061
extremely sparse, and the structure of Tanner V5 L # 1 8 1 L9 2 1 @
graph is very regular too — any check node and v6 H=(0 0 1 1 1 0 1 0 1 1
any variable node will have the same amount v7 @ 1 0 1 1 1@ 1 ¢ 1
of edges coming in. A lot of algorithms exist to Vz 1 1.0 1.0 0 1 1T 1 0]
construct some good LDPC, which are outof
scope of these slides. One of the approaches _
can be described like this: nf(;;g Eggg':
we can first construct a smaller matrix with Example of parity-check matrix and corresponding Tanner graph. Bold lines correspond to cycle of
zeroes and ones. and then instead of each non- length 4, which are crucial for decoders (as we will see later).

’ . ] “Good” parity check matrices usually result in fast algorithms for both decoding and encoding
zero element pUt a circulant matrix (SUCh (non-quadratic, as it would be expected). Please refer to T.Moon “Error correction coding”, 2" ed.
construction is called protograph quasi-circular for more details and algorithms.

matrix)



What’s the intuition behind LDPC codec?

LDPC encoding if our of scope of these slides, although generally
encoding is based on some good parity-check matrices
constructions }i. e. for full-rank parity-check matrix systematic 1 0 1 0 1 1
encoding would be simply multiplication by the inverse parity part; - M T M - T
or some Gaussian elimination approach may be used to make the
parity-check matrix lower-triangular, for easy parity part
calculation). For more details you can refer to this article.

In these slides we will consider LDPC decoding process. Unlike \
many well-known and quite complex algebraic codes (Reed-

Solomon, Reed-Muller, BCH etc.) whose efficiency can be precisely
calculated and who base decoding process on algebraic operations

over finite fields (i.e. find an error-locating polynomial with some

optimizations like Berlekamp-Massey algorithm), LDPC codecs + + +
usually base on different class of decoders, which proceed

iteratively with some belief-propagation to share information Simplistic scheme of hard-decoding belief propagation from Wiki

between check nodes and parity nodes in Tanner graph. That is, we
consider our input message from channel as some “weight” of the
variable nodes in Tanner graph, and start sending messages from
variable nodes to check nodes and vice-versa and use some simple
calculations to modify weights of the variable nodes in hope that
process finally converges and errors are corrected (and that is why
we do not like short cycles in Tanner graphs).


https://www.researchgate.net/publication/3080322_Efficient_Encoding_of_Low-Density_Parity-Check_Codes
https://en.wikipedia.org/wiki/Low-density_parity-check_code

What decoder receives as input?

Let us focus on binary case from now on, i.e. will have only 0 and 1 in the parity check matrix and the message that is
sent via channel is only some sequences of 0 and 1 (although channel can add some non-binary noise, of course). For
any decoder it is crucial what information is given at the input. There are actually two types of input data:

JHard information. It is just 0 and 1 for each bit of data on the input stream. In case of error in some bit, the value of
bit can be switched, so we can receive different input stream, that was originally sent. This is the most simple case to
understand and work with, although decoders may be not so complex for this type of input, and for a lot of applications
it is crucial for decoder to work good with hard information.

ISoft information. Some measure of our certainty that input bit sent was either 0 or 1. Although this measure can be
modulation-specific, usually all results in some kind of log likelihood ratio (LLR) information. For each bit b of binary
input stream after transmission through noisy channel LLR can be defined as:

P(b =0)

P(b=1)’

The sign of L, shows how much we are sure that input valueis0 or 1, i.e. if L, > 0 then b = 0 is more probable and if
L, < 0then b = 1 is more probable. In case of L, close to zero, we have less certainty about initial bit value before
transmission.

L, = log



What is required from good decoder?

We have several requirements for the “good” decoder (and they are quite the same as just for
“good” codes, since decoder is a major part of a code):

JHigh error correction capability;
JHigh throughput and low latency;
JLow memory consumption.

It is easy to see that soft input decoder can work with hard information and vice-versa (after
minor modification of input stream), however it is often the case that good hard-decoding
algorithms for LDPC perform not so good with soft information and vice-versa(and it is quite a
natural thing, actually). In these slides we will focus on soft decoding, although for anyone
interested in more details about LDPC and hard decoding it may be a good starting point to read
T.Moon or to look through these introductory slides.



https://www.jaist.ac.jp/~kurkoski/teaching/portfolio/uec_s05/S05-LDPC Lecture 1.pdf

How does good soft-
decoder work?

Algorithm 15.1 Log-Likelihood Belief Propagation Decoding Algorithm for Binary LDPC Codes

Input:
Description of the parity check matrix using A (m) and M(n).
The channel log likelihoods L, ,
Maximum # of iterations, MAXITER

Output: Estimate of codeword

One of the best (and first) LDPC soft-decoders is log-likelihood belief
propagation algorithm. Sometimes this algorithm is called sum-product
algorithm (SPA), although it is not quite correct, since SPA is a bit
different, but in perfect case this algorithm is numerically equivalent to
SPA. On this slide you can see a very concise and neat description of the
log-likelihood belief propagation algorithm from T.Moon “Error correction
coding” 2" edition (and there you can read some more about
probabilistic intuition behind this seemingly unreasonable set of
operations with LLRs). If you want some more gentle introduction in
Russian, you can read through this small article.

e N:number of variable nodes (length of code).
e K:number of input bits (dimension of code).

M: number of check nodes = N — K.

e n:index on variable nodes.

e m: index on check nodes.

e N (m): set of variable nodes (the set of n indices) which are neighbors to check node m.
e M(n): set of check nodes (the set of m indices) which are neighbors to variable node n.
e N(m)— {n}: the neighbors to V,,. excluding n.

e L, _,: The message (log probability ratio) from check node »’ to variable node n.

e L, The message (log probability ratio) from variable node »” to check node m.

Initialization: For each n, and for each m € M(n), set

L _,.=L

Check Node to Variable Node Step (horizontal step):
for each check node m

for each variable node n € N (m)
Compute the message from C, to V, by

Lm_"=2tanh"( I1 tauh(L,,_m/z))

' eN(m)—(n}
end for
end for
Variable Node to Check Node Step (vertical step)

for each variable node n
for each check node m € M(n)
Compute the message from V, to C,, by

m'eM(n)—(m)

Also compute the output likelihoods

Lyw=L+ ) L
m'eMi(n)

m'—n*

end for

jend for

ifor each n, decide &, = 1if L
1

ICheck Parity:

lif Hé = 0 then return &.
(Otherwise, if # iterations < MAXITER, goto Check Node to Variable Node Step
1Else return ¢ and an indication of coding failure.

< 0.

n—out



https://habr.com/ru/articles/453086/

How to make soft-decoder faster?

Calculation of hyperbolic tangent function (tanh) is too expensive for decoder, so people spent
some efforts to have a good approximations for this operation to make it computationally
cheaper and not too less efficient in terms of decoding capability. Nowadays a lot of decoders
on real devices use some variation of Min-Sum algorithm (Normalized Min-Sum, Min Sum with
offset etc.).

The basic idea behind Min-Sum algorithm is very easy: keep everything just like it is in log-
likelihood belief propagation algorithm, except instead of using complex tanh function use as an
approximation the following combination of min and sign functions:

Lpon = (Hn’eN(m)—{n} SIGN(Ly' o)) - ming: (|Lyr L |).

Modifications of this approach usually add some multipliers to min function (normalization
factor) or some offset to arguments inside min function. For more details behind why it is
possible and what modifications of algorithm exist one can refer to Moon’s book or to this
article in Russian.



https://mipt.ru/upload/medialibrary/e86/02.pdf

Where are neural networks?

Min-sum approach makes LDPC decoder less complex, however error-correction capability is
decreased compared to log-likelihood belief propagation algorithm. A lot of research efforts is
devoted to receive better code performance with error-correction capability close to BP
approach. Two directions of neural network application for LDPC decoding that will be
discussed in these slides are:

JImproving LDPC decoder itself (MS and BP);
dImproving LLR information on the input of decoder;

These approaches, although not widely used in product solutions, appear to be interesting novel
research directions.



What is NNMS decoder?

Neural Normalized Min-Sum (NNMS) decoder is way to use neural networks for LDPC NMS decoding. We
will base NNMS description on the article “A recipe of training neural network-based LDPC decoders” by

Guangwen Li, Xiao Yu.
J by, = log ( PWilci =0 _ 2u:
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Normalized Min-Sum message passing ;) —p, + Y~ z(-1) NNMS message passing




What is NNMS decoder?

Ist iteration 2nd iteration T'th iteration
Algorlthm 1 NNMS deCOdlng variable lf cEe:k- T \Ta;al:]; 1 'r c;ea(- T v-ari-zﬂ;e‘] |’ cEec-k- - -v-an';h-]e\] Soft

nodes 1 nodes nodes 1 1 nodes nodes 1 I nodes nodes 1 output
1 1

Input: channel signals b, H, T, and well trained «, 3, ~
Output: estimated binary vector ¢

1: Forany i € {1,2,...,N},j € {1,2,..., M}

2: x,(;?)_,v =0,l=1;

1
~( Je 18] :.,,{m
1 1

3: repeat

4: calculate v;— > ¢; message with 6;

5: calculate ¢;— > v; message with 7;

60 €V = (1,69, ... en),¢ = (1 — sgn(zM))/2 by 4;

7. if Hc) =0 then

8: return ¢V

9: else

10: l=1+1;

11: end if ottt
12: until (I > 7))

13: return E(T); Fig. 1. A full-loaded NNMS framework in which the trainable parameters

o, 3, assigned for each edge can be shared each other or trimmed off
to meet the need of applications, and the edge connections is in line with
placement of non-zero elements of check matrix H

From the article “A recipe of training neural network-based LDPC decoders” by Guangwen Li, Xiao Yu.



https://arxiv.org/pdf/2205.00481.pdf

How to train NNMS?

Construct NNMS model,
with «, 3, ~y initialized to be '1’s

!

Define loss function for NNMS output

I

Generate AWGN data batches,
Feeding NNMS model for training

Loss value fixed

or end of feeding NO

Trained NNMS with optimized e, 3,y

Fig. 2. Flow chart of training NNMS

1) Choice of loss function: One prerequisite of training is
to select a viable loss function among the ones off the shelf, on
which we apply a stochastic gradient descent (SGD) method
to optimize these trainable parameters.

Given the authentic and estimated binary vectors ¢ and
¢l),j = 1,2,..T, the hybrid loss function is defined as
follows,

(8)

where the weight factor p = 0.2 and balance factor £ = 100,

and its cross entropy term is

] NoT o 1

leele @ = 570D > (p(““' - z)k’gT)
p(e;” =z)

and the other mean squared error (MSE) term is

S S e = 6@ =) - )’
N

i=1 z=0

B(C,E) = pf,:g((:, E) + (1 - p)mfmse(c, E)

Cinse (Ca E) =

Or just use equal probability sampling from i
quantized SNR interval — a simplistic approach 1

From the article “A recipe of training neural network-based LDPC decoders” by Guangwen Li, Xiao Yu.

2) Generating of training data: Notably, the assumption
of all-zeros codeword transmitted in training, has no impact
on the validness of the followed inferences, in the sense
the trained NNMS can deal with the cases of any code-
word sending equally well, This unique property, attributed
to satisfying the message passing symmetry conditions [23],
greatly simplifies the training process. Correspondingly, the
loss definition 8 reduces to

N T
l(e,€) = 5 2 ). log

N
N AGCRETINC)

o eE”=0) i=
Y; ~ N(1,07 1 Loy
' (1,o7) e =E[Z)= 33 EZ]=3 1
i=1 i=1 i
_ 2 2 4 o
Zi = HY, ~ NG5, 72) - ig [ %dx,fam
Ey N I
(SNR), = (—) =10log,y —— 1 2 4
! Ny /,; 102}'{0}2 02=D[Z]=f§ (2)2‘4'% - i
! 1 e 11
1 = A4—+ —)dxr, I - +o0
1(2)= 3 X 12.(2) romay, M
=1



https://arxiv.org/pdf/2205.00481.pdf

TABLE 1
TRAINING SETTINGS OF THREE CODES

Three | SNR Range | Minibatch # of T
Codes (dB) number | size | epochs
code A [3.2,3.8] 2000 64 6 20

What's NNMS efficiency?  [ste s ismis o

Experimental results from the mentioned article: code A: a WiMAX (802.16) LDPC code (1056,880), code B: a finite geometry LDPC code
(1023,781), code C: a Gallager LDPC code (1008,504). The abbreviation ’SNNMS’ refers to the neural decoder with a shared trainable parameter
for each iteration at the check nodes side, thatis, a(l) =1, B (1) =1,y () =y (1) . Likewise, "UNNMS’ is the one with a unique trainable parameter
across all iterations, or a(1) =1, B (1) =1, v (I) =y, while ’ANNMS’ denotes a full-loaded NNMS decoder without any trimming.
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Fig. 8. BER/FER comparison for the decoding schemes of code A Fig. 9. BER/FER comparison for the decoding schemes of code B Fig. 10. BER/FER comparison for the decoding schemes of code C

From the article “A recipe of training neural network-based LDPC decoders” by Guangwen Li, Xiao Yu.



https://arxiv.org/pdf/2205.00481.pdf

How else can we modify NNMS?

In the article “Learning to Decode Protograph LDPC Codes ™ by Jincheng Dal, et.al. a lot of modifications of NNMS algorithm for the
protograph-based LDPC codes are described. The baseline idea behind all the approaches in the article is to share weights between edges in
single protograph, but we can share other weights too, and so other variations are proposed to modify the training process of NNMS:

0 =t 3 ), And relaxation approach:
e'=(v,e'),c'#e

o) ,Ygi)g‘g(i—l)u) n (1 _ %ﬁ)) Egiv)’

(ic) _ (iv) e=(v,c)
Cellve) = I | sgn (£, X X
[ ’ whnere
e’=(v’,c),v' #v Edge permutation within - ((i—l) )
each edge-type (ET) f(%) =f, + 4 ¢
ReLU [ o(® x : plv) | B0 e v o )
€ «, min of & y e'=(v,c'),c'#c
e'=(v’,e), v’ #v )
RelLU (z) = max (2,0).
?
Fig. 1. A graphical demonstration of protograph LDPC codes.
TABLE [
FOUR TYPES OF NEURAL MS DECODER. TABLE 11
TWO TYPES OF NEURAL MS DECODER WITH DAMPING FACTORS.
Type Description Definition (i’ and i" denote two different iterations)
Type-1 neural NOMS ) £ o 8 % B with i £ i Type Description Definition (i" and 7" denote two different iterations)
Type-11 simplified neural NOMS alll = a(i)! '3('5) — B('i), a(",) £ C)(("N), 'B("!) £ ﬁ(f”) with i* # i Type-V neural NOMS with damping Ct’.(:’) # a(“”), ﬂ(i') % ,B(l‘”)., ’}‘(2,) ?é ’f(i”) with i’ # i’
Type-I1I simplified neural NMS a® =al g0 =0, ") # o) with i’ # i’ Type-VI simplified neural NOMS with damping al®) £ o) B £ gU") A — D ) £ G it i £
Type-IV simplified neural OMS a@ =1, B0 = 3O B £ BUY) with i £ i



https://arxiv.org/pdf/2102.03828.pdf

How else can we modify NNMS?
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Fig. 10. BLER performance of BG2 codes with lifting sizes Z = 3 in (a) and Z = 16 in (b) under the AWGN channel, where the number of iterations is
I = 25,

From the article ““Learning to Decode Protograph LDPC Codes” by Jincheng Dai, et.al.; Project on GitHub: https://github.com/KyrieTan/Neural-Protograph-LDPC-Decoding
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What else to read on NNMS decoder?

“Deep Learning Methods 100 e 100 —
for Improved Decoding of - T o _
Linear Codes” by Eliya |-+~ BPRNN | 10 Lo
Nachmani et.al. may be . TR (Multilonsy : N
considered as one of the 3 10 NNa| = NNMSFF |
origins for the Z 2 Nt s LR
experiments with NNMS, & £ 0o
most of evaluations are & 0 8
BCH based. Some : = 104
recurrent networks 5
architectures are also 1073 oo s
evaluated. '
I 2 3 4 5 6 7 8 T S S R M S
Ey /Ny (dB) E,/No (dB)
fﬂie E.mf:.iz results for BCH(127,64) code trained with right-regular parity 2535,& Uﬂ:{ummca comparison of BP and min-sum decoders for BCH


https://arxiv.org/pdf/1706.07043.pdf

What else to read on NNMS decoder?

“Adversarial Neural
Networks for Error
Correcting Codes” by
Hung T. Nguyen et.al is
devoted to using GAN
architecture to improve
NNMS decoder.
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G 1
=~ 1 Pie
- -
-~ - - : _ - - -
S - L--""

Backpropagation to train networks

Fig. 2: Proposed framework with decoder and discriminator
networks competing and improving each other.

= = = =
s o L <

Frame Error Rate (FER)

=)
-

-
cn
in

—ry
o
=]

Frame Error Rate (FER)
s = =9
w r —_

=
iy

-
cn
tn

10°
Z 10"
w
L
£102
i
s
w10
@
E
o 4
BP —— w10 BP ——
FNOMS —=— FNOMS —=—
GANDEC_—=— 10°% GANDEG_—=—
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Signal-to-Noise Ratio (SNR) Signal-to-Noise Ratio (SNR)
(a) BCH(15.11) (b) BCH(63.45)
Fig. 3: Performance of different decoders on BCH codes.
100 s
10’
w
L
§102
o—
5
&10°
©
E
[t
SSID —— w10 SSID ——
DeepSSID —=— DeeRISSID —
GANDEC —e— 108 GANDEC —=—

-y

2 3 4 5 6 7 8 9
Signal-to-Noise Ratio (SNR)

-

2 3 4 5 6 7 8 9
Signal-to-Noise Ratio (SNR)

(a) RS(15.11) (b} RS(31,27)



https://arxiv.org/pdf/2112.11491.pdf

What else to read on NNMS decoder?

General overview of the NNMS approaches from Skoltech (Frolov, Andreev et.al.).

Simulation results, 5G LDPC codes, BG2, K=120, R=0.2 Simulation results, 5G LDPC codes, BG2, K=120, R=0.5
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http://sites.skoltech.ru/app/data/uploads/sites/52/2020/09/Lecture-8.-DNN-based-Decoding.pdf

How to improve LLRs with NN?

Interesting NN usage is proposed in
article “9.1x Error Acceptable
Adaptive Artificial Neural Network
Coupled LDPC ECC for Charge-trap
and Floating-gate 3D-NAND Flash
Memories” by Toshiki Nakamura et.
al.

Application scope is 3D NAND
memory cells, which also adapt
LDPC in modern SSD, however input
LLR highly affect SSD performance
(and it degrades quickly with SSD
wearing out in some amount of
time). Authors propose to modify
SSD controller, which is currently
storing BER of the cells (to improve
decoding) to a NN model which can
predict RBER and propose LLR as
LDPC input.

TABLE L INPUT PARAMETERS OF ANN (CASE 1 - 5)

"‘1"1’: Conventional LDPC Proposed ANN
a
Conventional LDPC predicts BER by using BER tables [6] Case1 | Case2 | Case3 | Cased | Case s
In 3D-NAND flash, because of complicated error characteristics,
table size is huge Vy, state Vo state o o o] o) o
P
L Important reliability V:LQ:&PSN 1. 5 Page type o o| o | o o
Input parameters of Neighbori Il data BER table k- E E | Neighboring cell data (o] (o] (o]
parameter x 3D-NAND flash eighboring cell da (2.9GBytes) B B 5
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X~ Xy Write/erase cycles g
e = Read offset level o]
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Fig. 2. Proposed Artificial Neural Network Coupled (ANN) LDPC ECC e s vies KN ,ﬂ_lms e
5.2 X104

(ANN-LDPC ECC) which precisely and automatically estimates BER and
LLR. By the precise LLR, LDPC decoder effectively corrects errors.



https://ieeexplore.ieee.org/document/8357064

What can be used for ECC modeling?

If you want to try out some ECC
approaches you can experiment with
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https://aff3ct.github.io/

Thank you for your attention!




