
Some approaches in 
Neural Networks Assisted 
Error Correction Coding
RONZHIN DMITRY

RONZHINDV@MY.MSU.RU



What is ECC?
Error Correction Coding (ECC) – technique that is used in telecommunication and computing 
systems that allows to fix errors that appear in message while transferring through some noisy 
channel. Different names for this research field and its subfields can be met in literature, i.e. 
Forward Error Correction (FEC), Channel Coding, Erasure Coding (EC, actually sub-direction of 
ECC), Error Controlling Codes etc. In these slides we will focus on block coding.

General scheme of the telecommunication channel from T.Moon “Error Correction Coding”, 2nd ed.Scheme from "Opportunities and Challenges for Error Correction Scheme for Wireless Body Area 
Network—A Survey" by Rajan Kadel et.al.



Is it useful?
ECC techniques are used in quite a lot of directions and applications:

Space and satellite communications;

Digital mobile communications (4G, 5G);

High-speed computer memory (NAND Flash memory);

File transfer protocols (including TCP/IP stack);

Quantum computing;

and much more…

For more examples you can refer to the article “Applications of Error-Control Coding” by Daniel J. 
Costello et.al. (although it is rather old one)



What’s the intuition behind ECC?
Common block-ECC techniques work “against” compression, i.e. some amount of additional 
information is added to the initial user data, which allows you to find and fix errors inside the 
noisy message after transmission. In case of systematic code original data is unmodified, in not 
systematic case data is also modified before transmitting (but can be recovered). Rate of the 
code is the fraction of data symbols length to total block length after adding parity.

•K symbols of data-block 1
P parity 
symbols

•K symbols of data-block 2
P parity 
symbols

•K symbols of data-block 3
P parity 
symbols

…
General scheme for systematic encoding – to each block 
of message symbols some amount of parity added before 
transmitting in channel, to ensure reliability

Rate 𝑅 =
𝐾

𝐾+𝑃

In the end each K data symbols are matched 
to K+P data symbols, which means that there 
is a mapping between K-dimensional space 
(in binary case – just vectors of {0,1} of 
length K) and K+P dimensional space. Error 
correction properties of the code are 
achieved if the resulting blocks of length 
K+P have some “space” between each other 
and can be distinguished after some noise is 
added from channel.



What are rate limits?
The first and probably most well-known limit to the performance of ECC was proved by Claude Shannon in 1948 in his 
noisy-channel coding theorem. This theorem in its first part states that not any rate is achievable in reliable data 
transmission, given some specific channel with some level of noise that it adds to the transmitted message (X – channel 
input, Y – channel output, 𝑝𝑋 - marginal distribution of input). For finite-block regime Shannon bound is not tight, and 
better estimation (2nd order) bounds can be used (see Polyanskiy-Poor-Verdu bounds).

https://en.wikipedia.org/wiki/Noisy-channel_coding_theorem
https://people.lids.mit.edu/yp/homepage/data/finite_block.pdf


How the noise is measured?
Shannon theorem states that rate should be less than capacity for some reliable coding scheme 
to exist, but capacity is calculated for specific channel with some level of noise. To express the 
level of noise usually the specific metric Signal-to-Noise Ratio is used. Signal-to-noise ratio is 
defined as the ratio of the power of a signal (meaningful input) to the power of background 

noise (meaningless or unwanted input): 𝑆𝑁𝑅 =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
; however, measuring this fraction “as-is” 

is not very convenient in applications, so usually SNR is expressed in decibels: 𝑆𝑁𝑅𝑑𝑏 =
10 log10 𝑆𝑁𝑅 . For some specific channel models (i.e. Additive White Gaussian Noise Channel) 
SNR is a very convenient metric to express channel-capacity at once:

https://en.wikipedia.org/wiki/Signal-to-noise_ratio
https://en.wikipedia.org/wiki/Additive_white_Gaussian_noise


How to make a code?
Suppose we identified the upper bound for a rate based on channel characteristics and we want to 
construct some ECC scheme for reliable transmission (we have to take into consideration that 
Shannon bound is very optimistic in finite block coding regime, though).

If we just select a random mapping from the K-dimensional space (where K is data size in block) to 
K+P dimensional scheme, so that 𝑅 =

𝐾

𝐾+𝑃
< 𝐶, the code may appear good

(and most probably will in case of very long values K+P, that’s what Shannon’s proof is about),

but we will have to organize a good encoding and decoding algorithm for any input data stream.

We could go with the following algorithm(input data in vector space over some finite field):

For every vector in K-dimensional space store the corresponding vector of size K+P. After receiving 
some message find the closest vector (i.e. closest by Hamming in finite fields) from the listed vectors in 
K+P dimensional space, and say that this was an originally sent message (Maximum Likelihood 
approach).

However, this is a terribly complex approach with extremely high computational and memory 
requirements, even in case of moderate-length codes (i.e. 𝐾 + 𝑃 > 100).



What makes some code good?
Thus, ECC scheme is in general some mapping and algorithms for decoding and encoding. 

A good ECC scheme is such a mapping, that:

has reasonable computational complexity;

has low memory requirements;

is able to decode enough amount of errors to achieve reliable transmission.

That is why usually code constructions under consideration have some good properties, and 
scientists put a lot of work to construct codes from some big class of codes. One of the most 
valuable classes of good codes (if not the most valuable) is the class of linear codes.



What are linear codes?
In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword.

A linear code of length n and dimension k is a linear subspace C with dimension k of the vector space 𝑭𝒒
𝒏, where 𝑭𝒒 is the finite field 

with q elements. Such a code is called a q-ary code. If q = 2 the code is described as a binary code. The vectors in C are called codewords. 
The size of a code is the number of codewords and equals qk.

Since it is a linear subspace, it is possible to generate a basis for this subspace, and thus make a matrix which will generate any possible 
element of the linear code using right-multiplication. Such a matrix is called a generator matrix for the linear code. If we consider an 
orthogonal subspace for C and construct a generator matrix for it, we will receive a so-called parity-check matrix for the linear code. It is 
obvious that left-multiplication of parity check matrix on any codeword from C results in zero (so kernel of parity check matrix is code C).

https://en.wikipedia.org/wiki/Linear_code


How does codec work?
Using a generator matrix 𝐺 for each input data block of size 𝑘 in finite field we create a message using multiplication by 𝐺:

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎 ∗ 𝐺

After data transfer through some noisy channel, part of the message may become corrupted. First check that is made is multiplication by 
parity-check matrix 𝐻 to see, if the received message a codeword from our code:

𝐻 ∗ 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 == 0

If this equality is not holding, we can state that error was detected. If it is holding, it is either the correct message or the undetected 
error. In case if we can resend data when we detect some errors this would be it, and we would just ask for new message from the sender. 
However, usually we expect to be able to fix some amount of errors, and that is when the hard part starts:

We have to design such an algorithm for a given code (mapping) that would allow us to:

1) Detect the positions of the errors in the incoming message (this is where all heavy math usually appears)

2) Fix errors on these positions

If we somehow know the positions of errors (and we can treat them like erasures) we have half of the work done, and this is the easy 
case. 

Here the concept of code distance plays the crucial part. If the code distance is 𝑑, and we have 𝑡 errors and 𝑒 erasures in the incoming 
message, the following should hold to guarantee the error-correction capability:

2 ∗ 𝑒 + 𝑡 < 𝑑



How else codes can be represented?
In coding theory, a Tanner graph, named after Michael 
Tanner, is a bipartite graph used to state constraints or 
equations which specify error correcting codes. 

For linear codes Tanner graph would be just a very neat 
representation of a parity-check matrix. As we already 
know, parity check matrix 𝐻 is just a special matrix that 
allows us to check if the incoming message a codeword
or not. In case is it is not a codeword – we are sure 
some errors happened during transmission, if not – we 
cannot be 100% sure that it is a correct message, but 
with some probability.

In case of binary codes edges in tanner graph need to 
additional weights, and using Tanner graph only one 
can reconstruct the linear code.

Example of a Tanner graph from these slides

Check nodes

Variable nodes

http://www.comlab.hut.fi/studies/3410/slides_08_12_4.pdf


What’s LDPC?
In information theory, a low-density parity-check (LDPC) 
code is a linear error correcting code, a method of 
transmitting a message over a noisy transmission channel. 
An LDPC code is constructed using a sparse Tanner graph. 
LDPC codes are capacity-approaching codes, which means 
that practical constructions exist that allow the noise 
threshold to be set very close to the theoretical maximum 
(the Shannon limit) for a symmetric memoryless channel. 

LDPC codes are also known as Gallager codes, in honor of 
Robert G. Gallager, who developed the LDPC concept in 
his doctoral dissertation at the Massachusetts Institute of 
Technology in 1960.LDPC codes have also been shown to 
have ideal combinatorial properties. In his dissertation, 
Gallager showed that LDPC codes achieve the Gilbert–
Varshamov bound for linear codes over binary fields with 
high probability. 

Gallager (upper) and MacKay (lower) examples of LDPC constructions. 
See this article in Russian for more gentle introduction to LDPC.

https://habr.com/ru/articles/453086/


How LDPC is constructed?
LDPC codes can be regular or irregular. Regular 
codes have the good property that in each row 
in parity-check matrix has exactly 𝒅𝒄 non-zero 
elements, and each column has exactly 𝒅𝒗
non-zero elements. In that case, matrix can be 
extremely sparse, and the structure of Tanner 
graph is very regular too – any check node and 
any variable node will have the same amount 
of edges coming in. A lot of algorithms exist to 
construct some good LDPC, which are out of 
scope of these slides. One of the approaches 
can be described like this:

we can first construct a smaller matrix with 
zeroes and ones, and then instead of each non-
zero element put a circulant matrix (such 
construction is called protograph quasi-circular 
matrix)

Example of parity-check matrix and corresponding Tanner graph. Bold lines correspond to cycle of 
length 4, which are crucial for decoders (as we will see later). 
“Good” parity check matrices usually result in fast algorithms for both decoding and encoding 
(non-quadratic, as it would be expected). Please refer to T.Moon “Error correction coding”, 2nd ed. 
for more details and algorithms. 



What’s the intuition behind LDPC codec?
LDPC encoding if our of scope of these slides, although generally 
encoding is based on some good parity-check matrices 
constructions (i.e. for full-rank parity-check matrix systematic 
encoding would be simply multiplication by the inverse parity part; 
or some Gaussian elimination approach may be used to make the 
parity-check matrix lower-triangular, for easy parity part 
calculation). For more details you can refer to this article.

In these slides we will consider LDPC decoding process. Unlike 
many well-known and quite complex algebraic codes (Reed-
Solomon, Reed-Muller, BCH etc.) whose efficiency can be precisely 
calculated and who base decoding process on algebraic operations 
over finite fields (i.e. find an error-locating polynomial with some 
optimizations like Berlekamp-Massey algorithm), LDPC codecs 
usually base on different class of decoders, which proceed 
iteratively with some belief-propagation to share information 
between check nodes and parity nodes in Tanner graph. That is, we 
consider our input message from channel as some “weight” of the 
variable nodes in Tanner graph, and start sending messages from 
variable nodes to check nodes and vice-versa and use some simple 
calculations to modify weights of the variable nodes in hope that 
process finally converges and errors are corrected (and that is why 
we do not like short cycles in Tanner graphs).

Simplistic scheme of hard-decoding belief propagation from Wiki

https://www.researchgate.net/publication/3080322_Efficient_Encoding_of_Low-Density_Parity-Check_Codes
https://en.wikipedia.org/wiki/Low-density_parity-check_code


What decoder receives as input?
Let us focus on binary case from now on, i.e. will have only 0 and 1 in the parity check matrix and the message that is 
sent via channel is only some sequences of 0 and 1 (although channel can add some non-binary noise, of course). For 
any decoder it is crucial what information is given at the input. There are actually two types of input data:

Hard information. It is just 0 and 1 for each bit of data on the input stream. In case of error in some bit, the value of 
bit can be switched, so we can receive different input stream, that was originally sent. This is the most simple case to 
understand and work with, although decoders may be not so complex for this type of input, and for a lot of applications 
it is crucial for decoder to work good with hard information.

Soft information. Some measure of our certainty that input bit sent was either 0 or 1. Although this measure can be 
modulation-specific, usually all results in some kind of log likelihood ratio (LLR) information. For each bit 𝑏 of binary 
input stream after transmission through noisy channel LLR can be defined as:

𝐿𝑏 = log
𝑃 𝑏 = 0

𝑃 𝑏 = 1
;

The sign of 𝐿𝑏 shows how much we are sure that input value is 0 or 1, i.e. if 𝐿𝑏 > 0 then 𝑏 = 0 is more probable and if 
𝐿𝑏 < 0 then 𝑏 = 1 is more probable. In case of 𝐿𝑏 close to zero, we have less certainty about initial bit value before 
transmission.



What is required from good decoder?
We have several requirements for the “good” decoder (and they are quite the same as just for 
“good” codes, since decoder is a major part of a code):

High error correction capability;

High throughput and low latency;

Low memory consumption.

It is easy to see that soft input decoder can work with hard information and vice-versa (after 
minor modification of input stream), however it is often the case that good hard-decoding 
algorithms for LDPC perform not so good with soft information and vice-versa(and it is quite a 
natural thing, actually). In these slides we will focus on soft decoding, although for anyone 
interested in more details about LDPC and hard decoding it may be a good starting point to read 
T.Moon or to look through these introductory slides.

https://www.jaist.ac.jp/~kurkoski/teaching/portfolio/uec_s05/S05-LDPC Lecture 1.pdf


How does good soft-
decoder work?
One of the best (and first) LDPC soft-decoders is log-likelihood belief 
propagation algorithm. Sometimes this algorithm is called sum-product 
algorithm (SPA), although it is not quite correct, since SPA is a bit 
different, but in perfect case this algorithm is numerically equivalent to 
SPA. On this slide you can see a very concise and neat description of the 
log-likelihood belief propagation algorithm from T.Moon “Error correction 
coding” 2nd edition (and there you can read some more about 
probabilistic intuition behind this seemingly unreasonable set of 
operations with LLRs). If you want some more gentle introduction in 
Russian, you can read through this small article.

https://habr.com/ru/articles/453086/


How to make soft-decoder faster?
Calculation of hyperbolic tangent function (tanh) is too expensive for decoder, so people spent 
some efforts to have a good approximations for this operation to make it computationally 
cheaper and not too less efficient in terms of decoding capability. Nowadays a lot of decoders 
on real devices use some variation of Min-Sum algorithm (Normalized Min-Sum, Min Sum with 
offset etc.).

The basic idea behind Min-Sum algorithm is very easy: keep everything just like it is in log-
likelihood belief propagation algorithm, except instead of using complex tanh function use as an 
approximation the following combination of min and sign functions:

𝐿𝑚→𝑛 ≅ ( 𝑛′∈𝑁 𝑚 − 𝑛 𝑠𝑖𝑔𝑛(𝐿𝑛′→𝑚)) ⋅ 𝑚𝑖𝑛𝑛′(|𝐿𝑛′→𝑚|).

Modifications of this approach usually add some multipliers to min function (normalization 
factor) or some offset to arguments inside min function. For more details behind why it is 
possible and what modifications of algorithm exist one can refer to Moon’s book or to this 
article in Russian.

https://mipt.ru/upload/medialibrary/e86/02.pdf


Where are neural networks?
Min-sum approach makes LDPC decoder less complex, however error-correction capability is 
decreased compared to log-likelihood belief propagation algorithm. A lot of research efforts is 
devoted to receive better code performance with error-correction capability close to BP 
approach. Two directions of neural network application for LDPC decoding that will be 
discussed in these slides are:

Improving LDPC decoder itself (MS and BP);

Improving LLR information on the input of decoder;

These approaches, although not widely used in product solutions, appear to be interesting novel 
research directions.



What is NNMS decoder?
Neural Normalized Min-Sum (NNMS) decoder is way to use neural networks for LDPC NMS decoding. We 
will base NNMS description on the article “A recipe of training neural network-based LDPC decoders” by 
Guangwen Li, Xiao Yu.

For example let’s consider AWGN with zero mean and variance 𝜎2.

Normalized Min-Sum message passing NNMS message passing



What is NNMS decoder?

From the article “A recipe of training neural network-based LDPC decoders” by Guangwen Li, Xiao Yu.

https://arxiv.org/pdf/2205.00481.pdf


How to train NNMS?

From the article “A recipe of training neural network-based LDPC decoders” by Guangwen Li, Xiao Yu.

Or just use equal probability sampling from 
quantized SNR interval – a simplistic approach

https://arxiv.org/pdf/2205.00481.pdf


What’s NNMS efficiency?
Experimental results from the mentioned article: code A: a WiMAX (802.16) LDPC code (1056,880), code B: a finite geometry LDPC code 
(1023,781), code C: a Gallager LDPC code (1008,504). The abbreviation ’SNNMS’ refers to the neural decoder with a shared trainable parameter 
for each iteration at the check nodes side, that is, α(l) = 1, β (1) = 1, γ (l) = γ (l) . Likewise, ’UNNMS’ is the one with a unique trainable parameter 
across all iterations, or α(l) = 1, β (1) = 1, γ (l) = γ, while ’ANNMS’ denotes a full-loaded NNMS decoder without any trimming.

From the article “A recipe of training neural network-based LDPC decoders” by Guangwen Li, Xiao Yu.

https://arxiv.org/pdf/2205.00481.pdf


How else can we modify NNMS?
In the article “Learning to Decode Protograph LDPC Codes” by Jincheng Dai, et.al. a lot of modifications of NNMS algorithm for the 
protograph-based LDPC codes are described. The baseline idea behind all the approaches in the article is to share weights between edges in
single protograph, but we can share other weights too, and so other variations are proposed to modify the training process of NNMS: 

And relaxation approach:

https://arxiv.org/pdf/2102.03828.pdf


How else can we modify NNMS?

From the article “Learning to Decode Protograph LDPC Codes” by Jincheng Dai, et.al.; Project on GitHub: https://github.com/KyrieTan/Neural-Protograph-LDPC-Decoding

https://arxiv.org/pdf/2102.03828.pdf
https://github.com/KyrieTan/Neural-Protograph-LDPC-Decoding


What else to read on NNMS decoder?
“Deep Learning Methods 
for Improved Decoding of 
Linear Codes” by Eliya
Nachmani et.al. may be 
considered as one of the 
origins for the 
experiments with NNMS, 
most of evaluations are 
BCH based. Some 
recurrent networks 
architectures are also 
evaluated.

https://arxiv.org/pdf/1706.07043.pdf


What else to read on NNMS decoder?
“Adversarial Neural 
Networks for Error 
Correcting Codes” by 
Hung T. Nguyen et.al is 
devoted to using GAN 
architecture to improve 
NNMS decoder. 

https://arxiv.org/pdf/2112.11491.pdf


What else to read on NNMS decoder?
General overview of the NNMS approaches from Skoltech (Frolov, Andreev et.al.).

http://sites.skoltech.ru/app/data/uploads/sites/52/2020/09/Lecture-8.-DNN-based-Decoding.pdf


How to improve LLRs with NN?
Interesting NN usage is proposed in 
article “9.1x Error Acceptable 
Adaptive Artificial Neural Network 
Coupled LDPC ECC for Charge-trap 
and Floating-gate 3D-NAND Flash 
Memories” by Toshiki Nakamura et. 
al. 

Application scope is 3D NAND 
memory cells, which also adapt 
LDPC in modern SSD, however input 
LLR highly affect SSD performance 
(and it degrades quickly with SSD 
wearing out in some amount of 
time). Authors propose to modify 
SSD controller, which is currently 
storing BER of the cells (to improve 
decoding) to a NN model which can 
predict RBER and propose LLR as 
LDPC input.

https://ieeexplore.ieee.org/document/8357064


What can be used for ECC modeling?
If you want to try out some ECC 
approaches you can experiment with 
open-source simulation tool called 
AFF3CT.

AFF3CT is an Open-source software 
(MIT license) dedicated to the 
Forward Error Correction (FEC or 
channel coding) simulations. It is 
written in C++11 and it supports a 
large range of codes: from the well-
spread Turbo codes to the new Polar 
codes including the Low-Density 
Parity-Check (LDPC) codes. A 
particular emphasis is given to the 
simulation throughput performance 
(hundreds of Mb/s on today's CPUs) 
and the portability of the code.

https://aff3ct.github.io/


Thank you for your attention!


