
Approximate Nearest Neighbors 
Search in Multidimensional 
Space
DMITRY RONZHIN

RONZHINDV@MY.MSU.RU



What’s the scope?
A well-known scenario is exact-search task, i.e. finding if some database contains records equal 
to query, or lying inside some query range. For this purpose a lot of algorithms and optimization 
techniques are developed, one of which is relational database (RDBMS). This can be useful for 
many applications, but when we start working with media data RDBMS does not always help.

There are several scenarios where, given some database, one needs to find similar entries to the 
given request. One of the most popular scenario is searching for similar images (implemented in 
Google, Yandex etc.). 



Where’s multidimensional space?
A lot of machine-learning approaches transfer media data to some numeric multidimensional representation, 
with the premise that machine-learning algorithm that is used somehow preserves specific properties of the 
input data on vector space (i.e. preserves some metric properties between images that have similar objects).

Embedding representation can be made in a different way, 

for example with neural networks or classic descriptors like

SIFT, SUFR, FAST, etc. Please refer to this article for some info:

https://rom1504.medium.com/image-embeddings-ed1b194d113e

Such embedding representational are usually multi-dimensional 

(typically 64D,128D,256D,512D float32 for images)

Image from https://www.mdpi.com/2813-0324/3/1/6

https://rom1504.medium.com/image-embeddings-ed1b194d113e
https://www.mdpi.com/2813-0324/3/1/6


Task statement
Data:

Some (relatively) large dataset with high-dimensional vector representations for some data

Input request:

Vector representation in the same space for some input data object.

Output:

Set of similar vectors from the dataset to the requested one. By similar we can understand that 
they are close to the requested vector by some metric (L0,L1,L2).

Note: If one stores correspondence between vector representation of data-objects from which 
the dataset was made, then it is easy to retrieve similar files for the end user (i.e. find similar 
image by requested one).



Possible limitations
1. Memory constraints

When dataset is too big, even vector representation of data can have size which will not fit in 
memory (not only RAM, any memory). With this in mind one should need to have a sort of 
dimensionality reduction for the dataset.

2. Time limitations (in inference)

In many cases search through all the dataset will take too much time for end user, especially if 
the data is multidimensional. There are several approaches that either minimize the response 
time with some extra cost on memory but without quality degradation, or vice versa.

Note: Many of the algorithms that we discuss here have both training and inference stages. 
Usually training stage is not strictly limited in terms of time, although sometimes training may be 
too long to end in reasonable time for system. One should keep this in mind when selecting an 
algorithm for ANN task.



Is there open-source?
Luckily yes, out there you can find several open-source projects which can help us with the ANN task. Here are 
just some of them:

1. FAISS library by Facebook

Written in C++, well optimized, contains a lot of implemented algorithms, can be used for product purposes in real 
systems. Available at https://github.com/facebookresearch/faiss

Examples in these slides are built with the use of this library.

2. ANNOY library

C++ based, available at https://github.com/spotify/annoy

3. Neighborhood Graph and Tree (NGT) library

C++ based, available at https://github.com/yahoojapan/NGT/

Contains graph-based methods for ANN search task

4. Rayuela.jl

Julia programming language based, contains several non-orthogonal quantization methods for ANN task. Not 
optimized for use in product, only for research. Available at https://github.com/una-dinosauria/Rayuela.jl

https://github.com/facebookresearch/faiss
https://github.com/spotify/annoy
https://github.com/yahoojapan/NGT/
https://github.com/una-dinosauria/Rayuela.jl


What if we have not so much dimensions
Well-known data structure which could help solving such a problem is KD-tree. 

A KD-Tree (short for k-dimensional tree) is a balanced binary tree which splits points between alternating axes. Every leaf node is a k-
dimensional point. 

Training cost: 𝑂 𝑛𝑙𝑜𝑔𝑛

Finding closest neighbor, insert new point, remove a point: 𝑂 𝑙𝑜𝑔𝑛

Pros: Very good algorithm for low-dimensional data. See examples of usage in scikit learn:

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html

Cons: For high-dimensional data a lot of problems arise in balancing. Quality of search also becomes less with dimensionality increase.

For product use in low dimensions you can use FLANN or NANO FLANN

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html
https://github.com/flann-lib/flann
https://github.com/jlblancoc/nanoflann


Naïve algorithm
Scan through all vector representations. Select K nearest vectors to the 
requested one (by some metric, i.e. L0,1,2). Return result to the end user.

Note: Such an approach is also known as flat index search.

Pros:

 This is a precise solution for the K-nearest neighbors task. End user will receive 
the best answer we can get from dataset with the given vector-embeddings.

Cons:

 Extremely low speed on large-scale datasets (need to search through all 
vectors and perform a lot of arithmetic on each one)

 Too much memory can be required to store the whole dataset.



Example (using FAISS)

Example code and output from https://github.com/facebookresearch/faiss/wiki/Getting-started

https://github.com/facebookresearch/faiss/wiki/Getting-started


Decreasing search time
First basic idea is to decrease search with some additional usage of clustering:

1. With the use of some clustering algorithm (i.e. k-means) select the fixed number nlist of centroids from the 
multidimensional space where our dataset relies, using some training sample from the dataset vectors.

2. “Bind” each vector from the dataset to the centroid (i.e. using centroid number).

3. When new request arrives we first search for some amount nprobes of closest centroids to the request, and 
then look through lists that are bound to the selected centroids, to search for K-nearest neighbors.

Note: This approach has a well-known embodiment called Inverted File Index, which uses slight modifications of 
the same idea. So you will often refer to it as to IVF Index.

Pros:

 Speed is increased drastically in case dataset is large and parameters nlist, nprobes are selected properly

Cons:

 Found k-nearest vectors may not be the exact solution, compared to exhaustive search

 We have some additional memory consumption for IVF indexing (though, rather small)



IVF Index Visualized
The big difference that you can find in here, 
compared to initial idea, is using residuals. 
Residual is simply a difference between the 
centroid vector and vector from the dataset.

You can also notice so-called product quantizer in 
this scheme, right after residual quantization. We 
will discuss it later, for now you can think that this 
block is doing nothing at all.

Why bother with residuals?
In many cases residual vectors for real-life datasets 
have better properties for further clustering and 
compression, which allows to stack additional 
algorithms on top of IVF.



Example (using FAISS)

Example code and output from https://github.com/facebookresearch/faiss/wiki/Faster-search

https://github.com/facebookresearch/faiss/wiki/Faster-search


Dimensionality Reduction
The main idea behind many (if not all) dimensionality reduction approach is to use some 
premise about data distribution, which allows to make a coordinate system less than initial (with 
possible minor data loss) and save both memory and computation costs when working with 
data.

Some classical dimensionality reduction methods are:

 PCA (Principle Component Analysis) – searches for subspace inside initial vector space to 
project data on, with the limitation that the new coordinate system for subspace will have 
maximum dispersion among initial data. Some of the variations of PCA:
 Randomized PCA

 Kernel PCA

 Incremental PCA (if your dataset is too large)

Manifold learning – this approaches try to predict the manifold inside initial vector space, where 
your data lies on:
 Locally Linear Embedding (LLE)

 Isomap



Dimensionality Reduction
For classical dimensionality reduction methods

Pros:

1. Many standard implementations

2. Well studied and work good on large scope of real-world data

Cons:

1. Fast methods like PCA may (and will) lead to quality reduction.

2. Slow methods may never finish learning.

Note: Please refer to this tutorial if you want to know more about dimensionality reduction 
techniques:

https://github.com/ageron/handson-ml2/blob/master/08_dimensionality_reduction.ipynb

https://github.com/ageron/handson-ml2/blob/master/08_dimensionality_reduction.ipynb


Example (using FAISS)

Example code from https://github.com/facebookresearch/faiss/wiki/Faiss-building-blocks:-clustering,-PCA,-quantization

https://github.com/facebookresearch/faiss/wiki/Faiss-building-blocks:-clustering,-PCA,-quantization


Dimensionality Reduction
Hashing-based approach is known as Locality Sensitive Hash (LSH). 

The main idea is to build a family of hash function for the dataset, which will partially represent 
metric of the initial data-space on the hashed-space, i.e. they will respect close vectors (so they 
remain close in new space), but may be wrong on distanced vectors.

Note: LSH is available in FAISS as IndexLSH class

Pros:

Good mathematical model

High speed

Cons:

Less quality in real life, compared to other algorithms

Image from the short tutorial https://web.iitd.ac.in/~sumeet/Slaney2008-LSHTutorial.pdf

https://web.iitd.ac.in/~sumeet/Slaney2008-LSHTutorial.pdf


Dimensionality Reduction
One of the most used in practice is the approach of vector quantization.

Idea is the following: If only there was enough centroids for our datasets and we could find a 
way to store these centroids in a compact representation, then searching would be faster and 
memory consumption would decrease. Simple K-means algorithm cannot afford too many 
centroids, but we can represent each dataset vector as an element from the linear 
combinations of vectors from some sets of centroids, each of which is selected on some data 
subspace.

There are two possibilities:

1. If the sets of centroids are orthogonal, then we simple have a Cartesian product of these 
sets, which form a new set for centroids on the whole dataset. Such approaches are called 
orthogonal.

2. If we do not require sets to be orthogonal, we have to make more computations and store 
more data, but results can be more precise. Such approaches are called non-orthogonal.



Orthogonal Vector Quantization 
Illustrated

Image from the article http://image.ntua.gr/iva/files/lopq.pdf

http://image.ntua.gr/iva/files/lopq.pdf


Orthogonal Methods - PQ
Product Quantization (PQ) is one of the most used orthogonal method for vector quantization. 

Given some vector in multidimensional space we just split it into parts (projections), and for 
each projection we work with simple algorithms – for example, to train centroids we use simple 
K-means and select the fixed number of centroids for each projection. Since they are 
orthogonal, each new vector is presented as an element of Cartesian product of the sets of 
centroids for each projection. If number of centroids in each projection is not too much, this 
allows to decrease space for vector representation (i.e. one byte for 256 centroids, instead of 
several float32 coordinates):

To compute distances for request we use saved codebooks with the centroid coordinates to 
quantize the request and make all arithmetic with centroid vectors first.



Product Quantization
Pros:

 Helps to beat the curse of dimensionality, allows to create enough centroids to represent 
dataset

 Very high speed to process the input request for search (since we can just calculate distances to 
codebooks first, and then sum everything up, thanks to orthogonality)

 High data compression is possible

 Good combination with IVF Index (use instead of flat index on the inverted-list level)

Cons:

 The grid of codebooks is rather solid, and it can have a lot of code words which represent too 
little real vectors (and some will contain too much, bad balancing of lists).

Please refer to original article for more details: 

https://lear.inrialpes.fr/pubs/2011/JDS11/jegou_searching_with_quantization.pdf

https://lear.inrialpes.fr/pubs/2011/JDS11/jegou_searching_with_quantization.pdf


Example (from FAISS)



PQ modifications
 Optimized Product Quantization (OPQ) – adds rotation matrix, which allows to rotate the grid of 
centroids and better fit dataset. Rotation matrix is learned once in training, and then has a tiny 
overhead in inference stage compared to PQ. Please refer to this article for more details:

https://www.cv-
foundation.org/openaccess/content_cvpr_2013/papers/Ge_Optimized_Product_Quantization_2
013_CVPR_paper.pdf

 Locally Optimized Product Quantization (LOPQ) – adds some set of rotation and shift matrices, 
which makes the grid fit even more. This approach requires much more time to train than OPQ, 
and has more overhead in inference, but allows for better search quality. Please refer to this 
article for more details:

http://image.ntua.gr/iva/files/lopq.pdf

https://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Ge_Optimized_Product_Quantization_2013_CVPR_paper.pdf
http://image.ntua.gr/iva/files/lopq.pdf


PQ optimizations
 Derived codebooks – adds hierarchy of quantizers that allows for faster search on large scale 
datasets. Uses bit representation of codebooks to make it more efficient. For more details 
please refer here: https://arxiv.org/pdf/1905.06900.pdf

 Polysemous codes – uses some Hamming-distance tricks to speed up search and sacrifice a bit 
of quality, which is useful for large scale datasets. Can be used in FAISS (index.search_type = 
faiss.IndexPQ.ST_polysemous). Please refer here for details: 
https://arxiv.org/pdf/1609.01882.pdf

 PQ Fast Scan (v1 and v2) – cache-optimized PQ implementations. Can be used in FAISS now 
(IndexPQFastScan). Please refer to this article for more details:

http://www.vldb.org/pvldb/vol9/p288-andre.pdf

https://arxiv.org/pdf/1905.06900.pdf
https://arxiv.org/pdf/1609.01882.pdf
http://www.vldb.org/pvldb/vol9/p288-andre.pdf


Non-orthogonal vector quantization
Does not use the premise of orthogonality of codebooks, which leads to heavier computations 
and more storage overhead, but allows better quality of search. Some of the methods are 
available in FAISS (please refer to this page with comparison and detailed information: 
https://github.com/facebookresearch/faiss/wiki/Additive-quantizers )

Example of non-orthogonal method pipeline (Residual Vector Quantization (RVQ)):

https://github.com/facebookresearch/faiss/wiki/Additive-quantizers


Graph-based Methods
Interesting family of approaches for ANN search is a graph-based algorithms.

They are mostly interesting in a use-case when you do not have strict limitations on memory (i.e. 
dataset is not too large and can possibly fit in RAM), but you have quite strict limitations on speed of 
search.

They can also server as a first-level (coarse) quantizer in IVF structure (instead of simple K-means) and 
possibly greatly increase overall search quality.

One of the known approaches is Hierarchical Navigable Small World (HNSW) which comes from the 
NSW approach, based on NSW graphs. These are the graphs where if the pair of vertices is not 
connected, they can be accessed via log2𝑁 hops in average, where 𝑁 is number of vertices. 

Constructing such an NSW graph helps to perform fast search, although does not allow to compress 
data, and gives great quality.

Please refer to this article (in Russian) for detailed algorithms and construction:

https://neerc.ifmo.ru/wiki/index.php?title=Поиск_ближайших_соседей_с_помощью_иерархическ
ого_маленького_мира

https://neerc.ifmo.ru/wiki/index.php?title=Поиск_ближайших_соседей_с_помощью_иерархического_маленького_мира


NSW and HNSW

Images from the article https://arxiv.org/abs/1603.09320

NSW

HNSW
See FAISS HNSW benchmark:
https://github.com/facebookresearch/faiss/wiki/Indexing-1M-vectors

https://arxiv.org/abs/1603.09320
https://github.com/facebookresearch/faiss/wiki/Indexing-1M-vectors


HNSW

Pros: High quality of search; Cons: No delete operation from index, more memory overhead



What else? A great variety of methods

This list is heavily outdated, although list itself shows the variety of approaches in this area



Thank you


