Approximate Nearest Neighbors
Search in Multidimensional
Space

DMITRY RONZHIN
RONZHINDV@MY.MSU.RU

What's the scope?

A well-known scenario is exact-search task, i.e. finding if some database contains records equal
to query, or lying inside some query range. For this purpose a lot of algorithms and optimization
techniques are developed, one of which is relational database (RDBMS). This can be useful for
many applications, but when we start working with media data RDBMS does not always help.

There are several scenarios where, given some database, one needs to find similar entries to the

given request. One of the most popular scenario is searching for similar images (implemented in
Google, Yandex etc.).

Web Images Video Maps Translate More

GO g!nge \ Ya ndex Search %

My feed My collections Topics v More v

Where’s multidimensional space?

A lot of machine-learning approaches transfer media data to some numeric multidimensional representation,
with the premise that machine-learning algorithm that is used somehow preserves specific properties of the
input data on vector space (i.e. preserves some metric properties between images that have similar objects).

Embedding representation can be made in a different way,

for example with neural networks or classic descriptors like

SIFT, SUFR, FAST, etc. Please refer to this article for some info:
https://rom1504.medium.com/image-embeddings-ed1b194d113e

Such embedding representational are usually multi-dimensional

(typically 64D,128D,256D,512D float32 for images)

@ Red: Asian Female) Orange: Asian Male
@ Cyan: Indian Female (@ Blue: Indian Male
@ Purple: Black Female Pink: Black Male

@ Black: White Female (@ Green: White Male

Image from https://www.mdpi.com/2813-0324/3/1/6

https://rom1504.medium.com/image-embeddings-ed1b194d113e
https://www.mdpi.com/2813-0324/3/1/6

Task statement

Data:

Some (relatively) large dataset with high-dimensional vector representations for some data
Input request:

Vector representation in the same space for some input data object.

Output:

Set of similar vectors from the dataset to the requested one. By similar we can understand that
they are close to the requested vector by some metric (LO,L1,L2).

Note: If one stores correspondence between vector representation of data-objects from which
the dataset was made, then it is easy to retrieve similar files for the end user (i.e. find similar
image by requested one).

Possible limitations

1. Memory constraints

When dataset is too big, even vector representation of data can have size which will not fit in
memory (not only RAM, any memory). With this in mind one should need to have a sort of
dimensionality reduction for the dataset.

2. Time limitations (in inference)

In many cases search through all the dataset will take too much time for end user, especially if
the data is multidimensional. There are several approaches that either minimize the response
time with some extra cost on memory but without quality degradation, or vice versa.

Note: Many of the algorithms that we discuss here have both training and inference stages.
Usually training stage is not strictly limited in terms of time, although sometimes training may be
too long to end in reasonable time for system. One should keep this in mind when selecting an
algorithm for ANN task.

s there open-source?

Luckily yes, out there you can find several open-source projects which can help us with the ANN task. Here are
just some of them:

1. FAISS library by Facebook

Written in C++, well optimized, contains a lot of implemented algorithms, can be used for product purposes in real
systems. Available at https://github.com/facebookresearch/faiss

Examples in these slides are built with the use of this library.
2. ANNOY library

C++ based, available at https://github.com/spotify/annoy

3. Neighborhood Graph and Tree (NGT) library

C++ based, available at https://github.com/yahoojapan/NGT/

Contains graph-based methods for ANN search task
4. Rayuela.jl

Julia programming language based, contains several non-orthogonal quantization methods for ANN task. Not
optimized for use in product, only for research. Available at https://github.com/una-dinosauria/Rayuela.jl

https://github.com/facebookresearch/faiss
https://github.com/spotify/annoy
https://github.com/yahoojapan/NGT/
https://github.com/una-dinosauria/Rayuela.jl

What if we have not so much dimensions

Well-known data structure which could help solving such a problem is KD-tree.

A KD-Tree (short for k-dimensional tree) is a balanced binary tree which splits points between alternating axes. Every leaf node is a k-
dimensional point.

1

s | &
L]
P4 ps ¢ m
.PIO
e

0 (]
-
('a—.';'l— m . [
*]
Figure 5.3 2 Fe—n
A kd-tree: on the left the way the plane {
is subdivided and on the right the L iy

corresponding binary tree
Training cost: O (nlogn)

Finding closest neighbor, insert new point, remove a point: O(logn)
Pros: Very good algorithm for low-dimensional data. See examples of usage in scikit learn:

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html

Cons: For high-dimensional data a lot of problems arise in balancing. Quality of search also becomes less with dimensionality increase.

For product use in low dimensions you can use FLANN or NANO FLANN

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html
https://github.com/flann-lib/flann
https://github.com/jlblancoc/nanoflann

Naive algorithm

Scan through all vector representations. Select K nearest vectors to the
requested one (by some metric, i.e. L0,1,2). Return result to the end user.

Note: Such an approach is also known as flat index search.

Pros:

" This is a precise solution for the K-nearest neighbors task. End user will receive
the best answer we can get from dataset with the given vector-embeddings.

Cons:

* Extremely low speed on large-scale datasets (need to search through all
vectors and perform a lot of arithmetic on each one)

* Too much memory can be required to store the whole dataset.

Example (using FAISS

The output of the sanity check should look like

d = 64
nb 100000 [[© 393 363 78]
[1555 277 364]
ng 10e0e [2304 101 13]
np.random.seed(1234) [3173 18 182]
xb = np.random.random((nb, d)).astype('float32") [4 288 576 531]]
xb[:, @] += np.arange(nb) / 1eee. [[e. 7.17517328 7.2076292 7.25116253]
Xq = np.random.random((nq, d)).astype('float32") [e. 6.32356453 6.6845808 6.79994535]
. _ [e. 5.79640865 6.39173603 7.28151226]
xq[:, @] += np.arange(nq) / 10@e. [e. 7.27790546 7.52798653 7.66284657]
[e. 6.76380348 7.29512024 7.36881447]]
faiss
index = faiss.IndexFlatL2(d) The output of the actual search is similar to

print(index.is_trained)
index.add(xb) [
print(index.ntotal)

[381 207 218 477]
[526 911 142 72]
[838 527 1290 425]
[196 184 164 359]
[

4 526 377 128 425]]

D, I = index.search(xb[:5], k)

print(I) [
print(D)

D, I = index.search(xqg, k)

print(I[:5])

print(I[-5:1)

[9900 19560 9389 9831]
[11055 18895 10812 11321]
[11353 11163 10164 9787]
[18571 10664 10632 9638]
[9628 9554 10836 9582]]

https://github.com/facebookresearch/faiss/wiki/Getting-started

Decreasing search time

First basic idea is to decrease search with some additional usage of clustering:

1. With the use of some clustering algorithm (i.e. k-means) select the fixed number nlist of centroids from the
multidimensional space where our dataset relies, using some training sample from the dataset vectors.

2. “Bind” each vector from the dataset to the centroid (i.e. using centroid number).

3. When new request arrives we first search for some amount nprobes of closest centroids to the request, and
then look through lists that are bound to the selected centroids, to search for K-nearest neighbors.

Note: This approach has a well-known embodiment called Inverted File Index, which uses slight modifications of
the same idea. So you will often refer to it as to IVF Index.

Pros:

= Speed is increased drastically in case dataset is large and parameters nlist, nprobes are selected properly
Cons:

= Found k-nearest vectors may not be the exact solution, compared to exhaustive search

= We have some additional memory consumption for IVF indexing (though, rather small)

IVF Index Visualized

Inverted file structure
" Database indexing meneaiss £; . 1he big difference that you can find in here,
" ¥ i(3~I_1T_T 11 compared toinitial idea, is using residuals.
| |quantizer o e Residual is simply a difference between the
a(y) il S . centroid vector and vector from the dataset.
= e

—t 1 1 1 |

i | You can also notice so-called product quantizer in
—— o) . imeflg%ﬁ?gI this scheme, right after residual quantization. We

S : will discuss it later, for now you can think that this
block is doing nothing at all.

| Query processing - T T 11
compute r(x) compute . .
__residual 400 a9(r(y) . Why bother with residuals?
wx M . In many cases residual vectors for real-life datasets
coarse have better properties for further clustering and
quantizer select k)) .
: smallest distances) compression, which allows to stack additional
X —i : .
N pts: s6E E éiliii o ’ algorithms on top of IVF.
Search result

Example (using FAISS

Results

For nprobe=1, the result looks like

nlist = 1@
k = 4
quantizer = faiss.IndexFlatL2(d)

[[9900 10500 9831 10808]
[11655 10812 11321 10266]
[11353 10164 10719 11013]
[10571 10203 10793 10952]
index.train(xb) [9582 10304 9622 9229]]
assert index.is_trained

index = faiss.IndexIVFFlat(quantizer, d, nlist)
assert not index.is_trained

index.add(xb)

D, I = index.search(xq, k)

print(I[-5:])

index.nprobe = 18 [[9908 10508 9389 9831]

D, I = index.search(xq, k) [11055 10895 10812 11321]

print(I[-5:1) [11353 11103 10164 9787]
[16571 10664 18632 9638]
[9628 9554 18836 9582]]

Increasing nprobe to 10 does exactly this:

https://github.com/facebookresearch/faiss/wiki/Faster-search

Dimensionality Reduction

The main idea behind many (if not all) dimensionality reduction approach is to use some
premise about data distribution, which allows to make a coordinate system less than initial (with

possible minor data loss) and save both memory and computation costs when working with
data.

Some classical dimensionality reduction methods are:

= PCA (Principle Component Analysis) — searches for subspace inside initial vector space to
project data on, with the limitation that the new coordinate system for subspace will have
maximum dispersion among initial data. Some of the variations of PCA:
= Randomized PCA

= Kernel PCA
= Incremental PCA (if your dataset is too large)

=Manifold learning — this approaches try to predict the manifold inside initial vector space, where
your data lies on:

= Locally Linear Embedding (LLE)
= [somap

Dimensionality Reduction

For classical dimensionality reduction methods

Pros:

1. Many standard implementations

2. Well studied and work good on large scope of real-world data
Cons:

1. Fast methods like PCA may (and will) lead to quality reduction.

2. Slow methods may never finish learning.

Note: Please refer to this tutorial if you want to know more about dimensionality reduction
techniques:

https://github.com/ageron/handson-ml2/blob/master/08 dimensionality reduction.ipynb

https://github.com/ageron/handson-ml2/blob/master/08_dimensionality_reduction.ipynb

Example (using FAISS)

Computing a PCA

Let's reduce 40D vectors to 10D.

random training data

mt = np.random.rand(1@ee, 4@).astype('float32")
mat = faiss.PCAMatrix (40, 10)

mat.train(mt)

assert mat.is_trained

tr = mat.apply(mt)

Example code from https://github.com/facebookresearch/faiss/wiki/Faiss-building-blocks:-clustering,-PCA,-guantization

https://github.com/facebookresearch/faiss/wiki/Faiss-building-blocks:-clustering,-PCA,-quantization

Dimensionality Reduction

Hashing-based approach is known as Locality Sensitive Hash (LSH).

The main idea is to build a family of hash function for the dataset, which will partially represent
metric of the initial data-space on the hashed-space, i.e. they will respect close vectors (so they
remain close in new space), but may be wrong on distanced vectors.

Note: LSH is available in FAISS as IndexLSH class

Pros:
"Good mathematical model

"High speed

Cons:

=Less quality in real life, compared to other algorithms

[FIG1] Two examples showing projections of two close (circles) and two distant (squares)
points onto the printed page.

https://web.iitd.ac.in/~sumeet/Slaney2008-LSHTutorial.pdf

Dimensionality Reduction

One of the most used in practice is the approach of vector quantization.

Idea is the following: If only there was enough centroids for our datasets and we could find a
way to store these centroids in a compact representation, then searching would be faster and
memory consumption would decrease. Simple K-means algorithm cannot afford too many
centroids, but we can represent each dataset vector as an element from the linear
combinations of vectors from some sets of centroids, each of which is selected on some data
subspace.

There are two possibilities:

1. If the sets of centroids are orthogonal, then we simple have a Cartesian product of these
sets, which form a new set for centroids on the whole dataset. Such approaches are called
orthogonal.

2. If we do not require sets to be orthogonal, we have to make more computations and store
more data, but results can be more precise. Such approaches are called non-orthogonal.

Orthogonal Vector Quantization
llustrated

& T ER

!..

S <. s P 008 o8

()kman (b) PQ

AT

i w- » o f”‘j.

(c) OPQ (d) LOPQ

http://image.ntua.gr/iva/files/lopq.pdf

Orthogonal Methods - PQ

Product Quantization (PQ) is one of the most used orthogonal method for vector quantization.

Given some vector in multidimensional space we just split it into parts (projections), and for
each projection we work with simple algorithms — for example, to train centroids we use simple
K-means and select the fixed number of centroids for each projection. Since they are
orthogonal, each new vector is presented as an element of Cartesian product of the sets of
centroids for each projection. If number of centroids in each projection is not too much, this
allows to decrease space for vector representation (i.e. one byte for 256 centroids, instead of

several float32 coordinates):

C —_— CI K @ @ K Cm:.
Tlyeeis D5y ey LD Do t1s ooy LD — 1 (ul(:c)), ...,qm(um(ﬂ:}),
e, e’ x —)
ui () Uy, (1)

To compute distances for request we use saved codebooks with the centroid coordinates to
guantize the request and make all arithmetic with centroid vectors first.

Product Quantization

Pros:

= Helps to beat the curse of dimensionality, allows to create enough centroids to represent
dataset

= Very high speed to process the input request for search (since we can just calculate distances to
codebooks first, and then sum everything up, thanks to orthogonality)

= High data compression is possible
= Good combination with IVF Index (use instead of flat index on the inverted-list level)
Cons:

= The grid of codebooks is rather solid, and it can have a lot of code words which represent too
little real vectors (and some will contain too much, bad balancing of lists).

Please refer to original article for more details:

https://lear.inrialpes.fr/pubs/2011/IDS11/jegou searching with gquantization.pdf

https://lear.inrialpes.fr/pubs/2011/JDS11/jegou_searching_with_quantization.pdf

Example (from FAISS

numpy Results

100000 The results look like
= 10000
np.random.seed(1234)

_ _ [[e 608 220 228]
xb = np.random.random((nb, d)).astype('float32') [11063 277 617]
xb[:, @] += np.arange(nb) / 1eee. [2 46 114 304]
xq = hp.random.random((nq, d)).astype('float32"') [3 791 527 316]
xq[:, @] += np.arange(nq) / 1eee. [4 159 288 393]]

'Fa:i.s§ [[1.48704751 6.19361687 6.34912491 6.35771513]
nlist = 100 .- [1.49981485 5.66632462 5.94188499 6£.29570007]
m=8 [1.63260388 6.04126883 6.18447495 6.26815748]
k = 4 [1.5356375 6.33165455 6.645195081 6.86594009]

[1.46283303 6.5022912 6.62621975 6.631542211]

quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFPQ(quantizer, d, nlist, m, 8)

index.train(xb)

index.add(xb)

D, I = index.search(xb[:5], k)
print(I)

print(D)

index.nprobe = 10

D, I = index.search(xq, k)
print(I[-5:1)

PQ modifications

= Optimized Product Quantization (OPQ) — adds rotation matrix, which allows to rotate the grid of
centroids and better fit dataset. Rotation matrix is learned once in training, and then has a tiny
overhead in inference stage compared to PQ. Please refer to this article for more details:

https://www.cv-
foundation.org/openaccess/content cvpr 2013/papers/Ge Optimized Product Quantization 2
013 CVPR paper.pdf

* Locally Optimized Product Quantization (LOPQ) — adds some set of rotation and shift matrices,
which makes the grid fit even more. This approach requires much more time to train than OPQ,
and has more overhead in inference, but allows for better search quality. Please refer to this
article for more details:

http://image.ntua.gr/iva/files/lopqg.pdf

https://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Ge_Optimized_Product_Quantization_2013_CVPR_paper.pdf
http://image.ntua.gr/iva/files/lopq.pdf

PQ optimizations

= Derived codebooks — adds hierarchy of quantizers that allows for faster search on large scale
datasets. Uses bit representation of codebooks to make it more efficient. For more details
please refer here: https://arxiv.org/pdf/1905.06900.pdf

= Polysemous codes — uses some Hamming-distance tricks to speed up search and sacrifice a bit
of quality, which is useful for large scale datasets. Can be used in FAISS (index.search_type =
faiss.IndexPQ.ST_polysemous). Please refer here for details:
https://arxiv.org/pdf/1609.01882.pdf

= PQ Fast Scan (v1 and v2) — cache-optimized PQ implementations. Can be used in FAISS now
(IndexPQFastScan). Please refer to this article for more details:

http://www.vldb.org/pvidb/vol9/p288-andre.pdf

https://arxiv.org/pdf/1905.06900.pdf
https://arxiv.org/pdf/1609.01882.pdf
http://www.vldb.org/pvldb/vol9/p288-andre.pdf

Non-orthogonal vector quantization

Does not use the premise of orthogonality of codebooks, which leads to heavier computations
and more storage overhead, but allows better quality of search. Some of the methods are
available in FAISS (please refer to this page with comparison and detailed information:
https://github.com/facebookresearch/faiss/wiki/Additive-quantizers)

Example of non-orthogonal method pipeline (Residual Vector Quantization (RvVQ)):

| Clustering G Clustering G
procedure —l T procedure j lcl lcz
X X E 2 K .
- O g : - 0 —x—> . »(+) & - O, % o+) —
+f =1 Nl < ./
4 1

(a) (b)

https://github.com/facebookresearch/faiss/wiki/Additive-quantizers

Graph-based Methods

Interesting family of approaches for ANN search is a graph-based algorithms.

They are mostly interesting in a use-case when you do not have strict limitations on memory (i.e.
dataset is not too large and can possibly fit in RAM), but you have quite strict limitations on speed of
search.

They can also server as a first-level (coarse) quantizer in IVF structure (instead of simple K-means) and
possibly greatly increase overall search quality.

One of the known approaches is Hierarchical Navigable Small World (HNSW) which comes from the
NSW approach, based on NSW graphs. These are the graphs where if the pair of vertices is not
connected, they can be accessed via log, N hops in average, where N is number of vertices.

Constructing such an NSW graph helps to perform fast search, although does not allow to compress
data, and gives great quality.

Please refer to this article (in Russian) for detailed algorithms and construction:

https://neerc.ifmo.ru/wiki/index.php?title=Mouck 6amKanmwunx coceanem € NOMOLWLLID Mepapxmuyeck
Oro MasleHbKOro mMmpa

https://neerc.ifmo.ru/wiki/index.php?title=Поиск_ближайших_соседей_с_помощью_иерархического_маленького_мира

NSW and HNSW

entry point :
Layer=0 |
wow 0=

See FAISS HNSW benchmark:
https://github.com/facebookresearch/faiss/wiki/Indexing-1M-vectors HNSW

https://arxiv.org/abs/1603.09320
https://github.com/facebookresearch/faiss/wiki/Indexing-1M-vectors

HNSW

1
INSERT (hnsw, g, M, Muux, efConstruction, mr)
Input: multilayer graph hnsw, new element g, number of established
connections M, maximum number of connections for each element
per layer M, size of the dynamic candidate list efConstruction, nor-
malization factor for level generation mc
Output: update hnsw inserting element g
1 We0 //list for the currently found nearest elements
2 ep « get enter point for hnsw
3 L« level ofep //top layer for hnsw
4 |« |-In(unif(0..1))-mc] // new element’s level
5 forl—L...I1+1
6 W<« SEARCH-LAYER(g, ep, ef1,)
7 ep « get the nearest element from W to g
8 for [c «— min(L, [) ... 0
9 W<« SEARCH-LAYER(q, ep, efConstruction, Ic)
10 neighbors « SELECT-NEIGHBORS(q, W, M, I.) // alg. 3 or alg. 4
11 add bidirectionall connectionts from neighbors to g at layer I
12 for each e € neighbors // shrink connections if needed
13 eConn « neighbourhood(e) at layer I
14 if |eConn | > M // shrink connections of e
M if e =0 then M = Mmaro
15 eNewComn «— SELECT-NEIGHBORS(e, eCont, Munas, [c)
// alg. 3 or alg. 4
16 set neighbourhood(e) at layer - to eNewConn
17 epe=W
18if > L
19 set enter point for hnsw to g

Algorithm 2
SEARCH-LAYER(qg, ep, ef, I)

Input: query element g, enter points ep, number of nearest to g ele-

ments to return ef, layer number I;

Qutput: ef closest neighbors to g

1 v«ep [/ setof visited elements

2 Ceep [/l setof candidates

3 We—e¢p //dynamic list of found nearest neighbors
4 while |C| >0

5 ¢+ extract nearest element from C to g

6 f<« get furthest element from Wto q

7 if distance(c, q) > distance(f, q)

8 break //all elements in W are evaluated

9 for each e € neighbourhood(c) at layer [// update C and W
10 ifegv

11 ve—vlUe

12 f + get furthest element from Wto g

13 if distance(e, q) < distance(f, q) or |W| <ef

14 C—CUe

15 We—WUe

16 if |W| >ef

17 remove furthest element from Wto g
18 return W

Algorithm 3

SELECT-NE[CHBORS-SEMPLE{Q, C, M)

Input: base element g, candidate elements C, number of neighbors to
return M

Output: M nearest elements to q

return M nearest elements from Cto q

Algorithm 5

K-NN-SEARCH(hnsw, g, K, ef)

Input: multilayer graph hnsw, query element g, number of nearest
neighbors to return K, size of the dynamic candidate list ef
Output: K nearest elements to g

1 W9 //setfor the current nearest elements

2 ep « get enter point for hnsw

3 L« levelofep //toplayer for hnsw

4 forle«—L...1

5 W« SEARCH-LAYER(q, ep, ef=1, I.)

6 ep < get nearest element from Wto g

7 W« SEARCH-LAYER(g, ep, ¢f, lc =0)

8 return K nearest elements from W to g

Pros: High quality of search; Cons: No delete operation from index, more memory overhead

What else? A great variety of methods

Table 1 Classification of vector quantization (VQ)

methods

Codebook structure

VQ method

Codebook structure

VQ method

TSVQ (Buzo et al., 1980)
HKM (Nister and Stewenius, 2006)

PQ (Jégou et al., 2010)
TC (Brandt, 2010)

e RPT (Dasgupta and Freund, 2009) OPQ (Ge et al., 2013)
TQ (Babenko and Lempitsky, 2015) Cartesian CKM (Norouzi and Fleet, 2013)
DPQ (Heo et al., 2014)
Lattice vQ (G‘:‘rSho’ 1979) pradicE LOPQ (Kalantidi and Avrithis, 2014)
PV (Wischer, 1080) OCKM (Wang et al., 2014)
Classified CVQ (Ramamurthi and Gersho, 1986) PTQ (Yuan and Liu, 2015a)
QCVQ (Chen et al., 2014) KSQ (Ozan et al., 2016a)
Feedback VQ (Kieffer, 1982) Joint JII (Xia et al., 2013)
. FSVQ (Foster et al., 1985)
i AQ (Babenko and Lempitsky, 2014)
MSVQ/RVQ (Juang and Gray, 1982) CQ (Zhang T et al., 2014)
ERVQ (Ai et al., 2014) Linear SCQ (Zhang et al., 2015)
Direct sum PRVQ (Wei et al., 2014) combination TQ (Babenko and Lempitsky, 2015)

RVQ-NP (Guo et al., 2016)
GRVQ (Liu et al., 2017)

LSQ (Martinez et al., 2016)
CompQ (Ozan et al., 2016b)

+LSH methods
+KD-trees
+Graph-structure methods

Thank you

